Irreducible Linear Differential Equations of Prime Order
نویسنده
چکیده
With the exception of a nite set of nite diierential Galois groups, if an irreducible linear diierential equation L(y) = 0 of prime order with unimodular diierential Galois group has a Liouvillian solution, then all algebraic solutions of smallest degree of the associated Riccati equation are solutions of a unique minimal polynomial. If the coeecients of L(y) = 0 are in Q()(x) Q(x) this unique minimal polynomial is also deened over Q()(x). In the nite number of exceptions all solutions of L(y) = 0 are algebraic and in each case one can apriori give an extension Q()(x) over which the minimal polynomial of an algebraic solution of L(y) = 0 can be computed.
منابع مشابه
Approximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملAn algorithm to compute Liouvillian solutions of prime order linear difference-differential equations
A normal form is given for integrable linear difference-differential equations {σ(Y ) = AY, δ(Y ) = BY }, which is irreducible over C(x, t) and solvable in terms of liouvillian solutions. We refine this normal form and devise an algorithm to compute all liouvillian solutions of such kind of systems of prime order.
متن کاملSolution of the first order fuzzy differential equations with generalized differentiability
In this paper, we study first order linear fuzzy differential equations with fuzzy coefficient and initial value. We use the generalized differentiability concept and apply the exponent matrix to present the general form of their solutions. Finally, one example is given to illustrate our results.
متن کاملA new approach for solving the first-order linear matrix differential equations
Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...
متن کاملBasic results on distributed order fractional hybrid differential equations with linear perturbations
In this article, we develop the distributed order fractional hybrid differential equations (DOFHDEs) with linear perturbations involving the fractional Riemann-Liouville derivative of order $0 < q < 1$ with respect to a nonnegative density function. Furthermore, an existence theorem for the fractional hybrid differential equations of distributed order is proved under the mixed $varphi$-Lipschit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Comput.
دوره 18 شماره
صفحات -
تاریخ انتشار 1994